Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.503
Filtrar
1.
Cell Mol Life Sci ; 81(1): 147, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502309

RESUMO

GABAergic interneurons are poised with the capacity to shape circuit output via inhibitory gating. How early in the development of medial vestibular nucleus (MVN) are GABAergic neurons recruited for feedforward shaping of outputs to higher centers for spatial navigation? The role of early GABAergic transmission in assembling vestibular circuits for spatial navigation was explored by neonatal perturbation. Immunohistochemistry and confocal imaging were utilized to reveal the expression of parvalbumin (PV)-expressing MVN neurons and their perineuronal nets. Whole-cell patch-clamp recording, coupled with optogenetics, was conducted in vitro to examine the synaptic function of MVN circuitry. Chemogenetic targeting strategy was also employed in vivo to manipulate neuronal activity during navigational tests. We found in rats a neonatal critical period before postnatal day (P) 8 in which competitive antagonization of GABAergic transmission in the MVN retarded maturation of inhibitory neurotransmission, as evidenced by deranged developmental trajectory for excitation/inhibition ratio and an extended period of critical period-like plasticity in GABAergic transmission. Despite increased number of PV-expressing GABAergic interneurons in the MVN, optogenetic-coupled patch-clamp recording indicated null-recruitment of these neurons in tuning outputs along the ascending vestibular pathway. Such perturbation not only offset output dynamics of ascending MVN output neurons, but was further accompanied by impaired vestibular-dependent navigation in adulthood. The same perturbations were however non-consequential when applied after P8. Results highlight neonatal GABAergic transmission as key to establishing feedforward output dynamics to higher brain centers for spatial cognition and navigation.


Assuntos
Navegação Espacial , Ratos , Animais , Interneurônios , Transmissão Sináptica , Núcleos Vestibulares/metabolismo , Neurônios GABAérgicos
2.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338702

RESUMO

In this review, we explore the intriguing realm of neurogenesis in the vestibular nuclei-a critical brainstem region governing balance and spatial orientation. We retrace almost 20 years of research into vestibular neurogenesis, from its discovery in the feline model in 2007 to the recent discovery of a vestibular neural stem cell niche. We explore the reasons why neurogenesis is important in the vestibular nuclei and the triggers for activating the vestibular neurogenic niche. We develop the symbiotic relationship between neurogenesis and gliogenesis to promote vestibular compensation. Finally, we examine the potential impact of reactive neurogenesis on vestibular compensation, highlighting its role in restoring balance through various mechanisms.


Assuntos
Núcleos Vestibulares , Vestíbulo do Labirinto , Gatos , Animais , Núcleos Vestibulares/patologia , Neurogênese , Células-Tronco , Tronco Encefálico
3.
Biomolecules ; 13(11)2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-38002319

RESUMO

BACKGROUND: This study aimed to investigate the effects of unilateral labyrinthectomy (UL) on monoamine neurotransmitters in the medial vestibular nucleus (MVN) of rats. METHODS: Adult Sprague-Dawley rats were utilized for the vestibular impaired animal model through UL. The success of the model establishment and the recovery process were evaluated using vestibular behavioral tests, including spontaneous nystagmus, postural asymmetry, and balance beam test. Additionally, the expression levels of c-Fos protein in the MVN were assessed by immunofluorescence. Furthermore, changes in the expression levels of monoamine neurotransmitters, including 5-hydroxytryptamine (5-HT), norepinephrine (NE), dopamine (DA), and histamine in the MVN, were analyzed using high-performance liquid chromatography (HPLC) at different time points after UL (4 h, 8 h, 1 day, 2 days, 4 days, and 7 days). RESULTS: Compared to the sham control group, the UL group exhibited the most pronounced vestibular impairment symptoms at 4 h post-UL, which significantly decreased at 4 days and almost fully recovered by 7 days. Immunofluorescence results showed a notable upregulation of c-Fos expression in the MVN subsequent to the UL-4 h, serving as a reliable indicator of heightened neuronal activity. In comparison with the sham group, HPLC analysis showed that the levels of 5-HT and NE in the ipsilesional MVN of the UL group were significantly elevated within 4 days after UL, and peaked on 1 day and 2 days, respectively. DA showed an increasing trend at different time points up to 7 days post-UL, while histamine levels significantly increased only at 1 day post-UL. CONCLUSIONS: UL-induced dynamic changes in monoamine neurotransmitters during the early compensation period in the rat MVN may be associated with the regulation of the central vestibular compensation mechanism by the MVN.


Assuntos
Histamina , Vestíbulo do Labirinto , Ratos , Animais , Ratos Sprague-Dawley , Histamina/metabolismo , Serotonina/metabolismo , Neurotransmissores/metabolismo , Núcleos Vestibulares/metabolismo
4.
J Neurosci ; 43(49): 8403-8424, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-37871964

RESUMO

The sense of orientation of an animal is derived from the head direction (HD) system found in several limbic structures and depends on an intact vestibular labyrinth. However, how the vestibular system influences the generation and updating of the HD signal remains poorly understood. Anatomical and lesion studies point toward three key brainstem nuclei as key components for generating the HD signal-nucleus prepositus hypoglossi, supragenual nucleus, and dorsal paragigantocellularis reticular nuclei. Collectively, these nuclei are situated between the vestibular nuclei and the dorsal tegmental and lateral mammillary nuclei, which are thought to serve as the origin of the HD signal. To determine the types of information these brain areas convey to the HD network, we recorded neurons from these regions while female rats actively foraged in a cylindrical enclosure or were restrained and rotated passively. During foraging, a large subset of cells in all three nuclei exhibited activity that correlated with the angular head velocity (AHV) of the rat. Two fundamental types of AHV cells were observed; (1) symmetrical AHV cells increased or decreased their firing with increases in AHV regardless of the direction of rotation, and (2) asymmetrical AHV cells responded differentially to clockwise and counterclockwise head rotations. When rats were passively rotated, some AHV cells remained sensitive to AHV, whereas firing was attenuated in other cells. In addition, a large number of AHV cells were modulated by linear head velocity. These results indicate the types of information conveyed from the vestibular nuclei that are responsible for generating the HD signal.SIGNIFICANCE STATEMENT Extracellular recording of brainstem nuclei (nucleus prepositus hypoglossi, supragenual nucleus, and dorsal paragigantocellularis reticular nucleus) that project to the head direction circuit identified different types of AHV cells while rats freely foraged in a cylindrical environment. The firing of many cells was also modulated by linear velocity. When rats were restrained and passively rotated, some cells remained sensitive to AHV, whereas others had attenuated firing. These brainstem nuclei provide critical information about the rotational movement of the head of the rat in the azimuthal plane.


Assuntos
Movimento , Neurônios , Ratos , Feminino , Animais , Movimento/fisiologia , Neurônios/fisiologia , Núcleos Vestibulares , Núcleo Celular , Movimentos da Cabeça/fisiologia , Cabeça/fisiologia
5.
Proc Natl Acad Sci U S A ; 120(44): e2304933120, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37847729

RESUMO

Travel can induce motion sickness (MS) in susceptible individuals. MS is an evolutionary conserved mechanism caused by mismatches between motion-related sensory information and past visual and motion memory, triggering a malaise accompanied by hypolocomotion, hypothermia, hypophagia, and nausea. Vestibular nuclei (VN) are critical for the processing of movement input from the inner ear. Motion-induced activation of VN neurons recapitulates MS-related signs. However, the genetic identity of VN neurons mediating MS-related autonomic and aversive responses remains unknown. Here, we identify a central role of cholecystokinin (CCK)-expressing VN neurons in motion-induced malaise. Moreover, we show that CCK VN inputs onto the parabrachial nucleus activate Calca-expressing neurons and are sufficient to establish avoidance to novel food, which is prevented by CCK-A receptor antagonism. These observations provide greater insight into the neurobiological regulation of MS by identifying the neural substrates of MS and providing potential targets for treatment.


Assuntos
Enjoo devido ao Movimento , Vestíbulo do Labirinto , Animais , Camundongos , Movimento , Neurônios/fisiologia , Núcleos Vestibulares/fisiologia , Vestíbulo do Labirinto/fisiologia
6.
Neurology ; 101(14): e1461-e1465, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37460229

RESUMO

OBJECTIVES: Herpes zoster oticus (HZO) typically provokes vestibular symptoms and is traditionally viewed as a cranial nerve equivalent of shingles, but in contrast to vestibular neuritis (VN), it is unclear whether the pathology of HZO is limited to the vestibular nerve (neuritis) or can also involve the brainstem (nucleitis). METHODS: We retrospectively compared brain MRIs of patients with HZO with those of patients with VN to study radiologic changes in the brainstem. RESULTS: Five of 10 patients with HZO showed signal abnormalities in the vestibular nuclei, which lie in multiple vascular territories, whereas no patients with VN exhibited such findings. DISCUSSION: HZO may at least in part reflect vestibular nucleitis, as opposed to a pure neuritis.


Assuntos
Herpes Zoster da Orelha Externa , Neurite (Inflamação) , Neuronite Vestibular , Humanos , Neuronite Vestibular/complicações , Neuronite Vestibular/diagnóstico por imagem , Estudos Retrospectivos , Vertigem/diagnóstico por imagem , Vertigem/etiologia , Núcleos Vestibulares
7.
Brain Behav ; 13(8): e3064, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37401009

RESUMO

INTRODUCTION: The efferent vestibular system (EVS) is a feedback circuit thought to modulate vestibular afferent activity by inhibiting type II hair cells and exciting calyx-bearing afferents in the peripheral vestibular organs. In a previous study, we suggested EVS activity may contribute to the effects of motion sickness. To determine an association between motion sickness and EVS activity, we examined the effects of provocative motion (PM) on c-Fos expression in brainstem efferent vestibular nucleus (EVN) neurons that are the source of efferent innervation in the peripheral vestibular organs. METHODS: c-Fos is an immediate early gene product expressed in stimulated neurons and is a well-established marker of neuronal activation. To study the effects of PM, young adult C57/BL6 wild-type (WT), aged WT, and young adult transgenic Chat-gCaMP6f mice were exposed to PM, and tail temperature (Ttail ) was monitored using infrared imaging. After PM, we used immunohistochemistry to label EVN neurons to determine any changes in c-Fos expression. All tissue was imaged using laser scanning confocal microscopy. RESULTS: Infrared recording of Ttail during PM indicated that young adult WT and transgenic mice displayed a typical motion sickness response (tail warming), but not in aged WT mice. Similarly, brainstem EVN neurons showed increased expression of c-Fos protein after PM in young adult WT and transgenic mice but not in aged cohorts. CONCLUSION: We present evidence that motion sickness symptoms and increased activation of EVN neurons occur in young adult WT and transgenic mice in response to PM. In contrast, aged WT mice showed no signs of motion sickness and no change in c-Fos expression when exposed to the same provocative stimulus.


Assuntos
Enjoo devido ao Movimento , Camundongos , Animais , Enjoo devido ao Movimento/metabolismo , Neurônios/metabolismo , Núcleos Vestibulares/metabolismo , Neurônios Eferentes/metabolismo , Camundongos Transgênicos
8.
eNeuro ; 10(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37268420

RESUMO

Vestibulospinal neurons integrate sensed imbalance to regulate postural reflexes. As an evolutionarily conserved neural population, understanding their synaptic and circuit-level properties can offer insight into vertebrate antigravity reflexes. Motivated by recent work, we set out to verify and extend the characterization of vestibulospinal neurons in the larval zebrafish. Using current-clamp recordings together with stimulation, we observed that larval zebrafish vestibulospinal neurons are silent at rest, yet capable of sustained spiking following depolarization. Neurons responded systematically to a vestibular stimulus (translation in the dark); responses were abolished after chronic or acute loss of the utricular otolith. Voltage-clamp recordings at rest revealed strong excitatory inputs with a characteristic multimodal distribution of amplitudes, as well as strong inhibitory inputs. Excitatory inputs within a particular mode (amplitude range) routinely violated refractory period criteria and exhibited complex sensory tuning, suggesting a nonunitary origin. Next, using a unilateral loss-of-function approach, we characterized the source of vestibular inputs to vestibulospinal neurons from each ear. We observed systematic loss of high-amplitude excitatory inputs after utricular lesions ipsilateral, but not contralateral, to the recorded vestibulospinal neuron. In contrast, while some neurons had decreased inhibitory inputs after either ipsilateral or contralateral lesions, there were no systematic changes across the population of recorded neurons. We conclude that imbalance sensed by the utricular otolith shapes the responses of larval zebrafish vestibulospinal neurons through both excitatory and inhibitory inputs. Our findings expand our understanding of how a vertebrate model, the larval zebrafish, might use vestibulospinal input to stabilize posture. More broadly, when compared with recordings in other vertebrates, our data speak to conserved origins of vestibulospinal synaptic input.


Assuntos
Neurônios , Peixe-Zebra , Animais , Neurônios/fisiologia , Reflexo , Medula Espinal/fisiologia , Núcleos Vestibulares
9.
J Feline Med Surg ; 25(6): 1098612X231175761, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37318332

RESUMO

CASE SERIES SUMMARY: Positioning head tilt (PHT) is a dynamic neurological sign in which the head tilts to the opposite side to which it is moving. This sign is triggered in response to head movement and is thought to be due to the lack of inhibition of vestibular nuclei by the cerebellar nodulus and uvula (NU). The occurrence of PHT in animals has been suggested to be an indicator of NU dysfunction. Here, we describe the acute onset of PHT in 14 cats. All the cats were diagnosed with hypokalaemic myopathy caused by a range of pathologies. The PHT resolved along with other signs related to myopathy, such as cervical flexion and generalised weakness, after electrolyte correction in all cats. RELEVANCE AND NOVEL INFORMATION: Hypokalaemic myopathy was the likely cause of PHT in the present feline cases.


Assuntos
Doenças do Gato , Doenças Musculares , Gatos , Animais , Núcleos Vestibulares/fisiologia , Doenças Musculares/veterinária , Doenças do Gato/diagnóstico
10.
Georgian Med News ; (337): 125-131, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37354685

RESUMO

Prolonged vibration exposure leads to alterations of the central control mechanisms of both the vestibulo-ocular and the vestibulo-autonomic systems, including a change in the hypothalamic-vestibular relationships associated, in particular, with the supraoptic nucleus and paraventricular nucleus. Post-vibration disturbances of the vestibular function are largely due to adaptive changes in neurotransmitter activity. The dynamics of spike activity of single neurons of the superior vestibular nucleus (SVN) in response to high-frequency stimulation of the paraventricular and supraoptic hypothalamic nuclei after long-term vibration exposure were analyzed. Analysis of impulse activity revealed the prevalence of tetanic potentiation in the responses of SVN neurons to high-frequency stimulation of paraventricular and supraoptic nuclei of rats. Exposure of animals to vibration led to a decrease in the number of neurons with tetanic potentiations and significant dominance of post-tetanic potentiation. Morphological and histochemical results showed that under hypothalamic stimulation in the SVN neurons of rats exposed to vibration, there is an increase in metabolism and dephosphorylation processes in the cellular structures of the studied brain area, which ultimately provides optimal conditions for the processes of cell survival and regeneration.


Assuntos
Hipotálamo , Vibração , Ratos , Animais , Hipotálamo/fisiologia , Núcleos Vestibulares/metabolismo , Neurônios/fisiologia , Encéfalo
11.
Sci Rep ; 13(1): 4443, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932124

RESUMO

Fragmented and piecemeal evidence from animal and human studies suggests that vestibular information is transmitted to the striatum, a part of the basal ganglia that degenerates in Parkinson's Disease. Nonetheless, surprisingly little is known about the precise effects of activation of the vestibular system on the striatum. Electrophysiological studies have yielded inconsistent results, with many studies reporting only sparse responses to vestibular stimulation in the dorsomedial striatum. In this study, we sought to elucidate the effects of electrical stimulation of the peripheral vestibular system on electrophysiological responses in the tail of the rat striatum, a newly discovered region for sensory input. Rats were anaesthetised with urethane and a bipolar stimulating electrode was placed in the round window in order to activate the peripheral vestibular system. A recording electrode was positioned in the tail of the striatum. Local field potentials (LFPs) were recorded ipsilaterally and contralaterally to the stimulation using a range of current parameters. In order to confirm that the vestibular system was activated, video-oculography was used to monitor vestibular nystagmus. At current amplitudes that evoked vestibular nystagmus, clear triphasic LFPs were evoked in the bilateral tail of the striatum, with the first phase of the waveform exhibiting latencies of less than 22 ms. The LFP amplitude increased with increasing current amplitude (P ≤ 0.0001). In order to exclude the possibility that the LFPs were evoked by the activation of the auditory system, the cochlea was surgically lesioned in some animals. In these animals the LFPs persisted despite the cochlear lesions, which were verified histologically. Overall, the results obtained suggest that there are vestibular projections to the tail of the striatum, which could possibly arise from projections via the vestibular nucleus or cerebellum and the parafasicular nucleus of the thalamus.


Assuntos
Corpo Estriado , Medida de Potenciais de Campo Local , Sistema Vestibular , Animais , Ratos , Corpo Estriado/anatomia & histologia , Corpo Estriado/fisiologia , Sistema Vestibular/fisiologia , Masculino , Ratos Wistar , Estimulação Elétrica , Uretana , Eletrodos , Anestesia , Núcleos Intralaminares do Tálamo/fisiologia , Núcleos Vestibulares/fisiologia , Cerebelo/fisiologia
12.
Curr Biol ; 33(7): 1265-1281.e7, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36924768

RESUMO

Across the nervous system, neurons with similar attributes are topographically organized. This topography reflects developmental pressures. Oddly, vestibular (balance) nuclei are thought to be disorganized. By measuring activity in birthdated neurons, we revealed a functional map within the central vestibular projection nucleus that stabilizes gaze in the larval zebrafish. We first discovered that both somatic position and stimulus selectivity follow projection neuron birthdate. Next, with electron microscopy and loss-of-function assays, we found that patterns of peripheral innervation to projection neurons were similarly organized by birthdate. Finally, birthdate revealed spatial patterns of axonal arborization and synapse formation to projection neuron outputs. Collectively, we find that development reveals previously hidden organization to the input, processing, and output layers of a highly conserved vertebrate sensorimotor circuit. The spatial and temporal attributes we uncover constrain the developmental mechanisms that may specify the fate, function, and organization of vestibulo-ocular reflex neurons. More broadly, our data suggest that, like invertebrates, temporal mechanisms may assemble vertebrate sensorimotor architecture.


Assuntos
Neurônios , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Neurônios/fisiologia , Reflexo Vestíbulo-Ocular/fisiologia , Tronco Encefálico , Núcleos Vestibulares/fisiologia
13.
J Vet Med Sci ; 85(3): 266-270, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36696997

RESUMO

Prosaposin is a precursor of lysosomal hydrolases activator proteins, saposins, and also acts as a secretory protein that is not processed into saposins. Prosaposin elicits neurotrophic function via G protein-coupled receptor (GPR) 37, and prosaposin deficiency causes abnormal vestibuloauditory end-organ development. In this study, immunohistochemistry was used to examine prosaposin and GPR37 expression patterns in the mouse cochlear and vestibular nuclei. Prosaposin immunoreactivity was observed in neurons and glial cells in both nuclei. GPR37 immunoreactivity was observed in only some neurons, and its immunoreactivity in the vestibular nucleus was weaker than that in the cochlear nucleus. This study suggests a possibility that prosaposin deficiency affects not only the end-organs but also the first center of the vestibuloauditory system.


Assuntos
Neurônios , Saposinas , Animais , Camundongos , Neurônios/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Saposinas/metabolismo , Núcleos Vestibulares/metabolismo , Núcleo Coclear
14.
Prog Neurobiol ; 221: 102402, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36608782

RESUMO

Vestibular information processed first by the brainstem vestibular nucleus (VN), and further by cerebellum and thalamus, underlies diverse brain function. These include the righting reflexes and spatial cognitive behaviour. While the cerebellar and thalamic circuits that decode vestibular information are known, the importance of VN neurons and the temporal requirements for their maturation that allow developmental consolidation of the aforementioned circuits remains unclear. We show that timely unsilencing of glutamatergic circuits in the VN by NMDA receptor-mediated insertion of AMPAR receptor type 1 (GluA1) subunits is critical for maturation of VN and successful consolidation of higher circuits that process vestibular information. Delayed unsilencing of NMDA receptor-only synapses of neonatal VN neurons permanently decreased their functional connectivity with inferior olive circuits. This was accompanied by delayed pruning of the inferior olive inputs to Purkinje cells and permanent reduction in their plasticity. These derangements led to deficits in associated vestibular righting reflexes and motor co-ordination during voluntary movement. Vestibular-dependent recruitment of thalamic neurons was similarly reduced, resulting in permanently decreased efficiency of spatial navigation. The findings thus show that well-choreographed maturation of the nascent vestibular circuitry is prerequisite for functional integration of vestibular signals into ascending pathways for diverse vestibular-related behaviours.


Assuntos
Tronco Encefálico , Receptores de AMPA , Receptores de N-Metil-D-Aspartato , Núcleos Vestibulares , Humanos , Recém-Nascido , Tronco Encefálico/metabolismo , Neurônios/metabolismo , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Núcleos Vestibulares/metabolismo
15.
Brain Struct Funct ; 228(2): 463-473, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36301353

RESUMO

Unilateral labyrinthectomy causes distinct oculomotor and postural disorder syndromes that gradually deteriorate. Simultaneously, compensatory mechanisms for the suppression of pathological disorders were activated. The current study aimed to investigate the characteristics of impulse activity in the ipsilateral and contralateral neurons of the lateral vestibular nucleus of unilaterally labyrinthectomized rats during various periods of vibration exposure. A program analysis of the background impulse activity of the neurons in the right- and left-lateral vestibular nuclei of rats under normal condition and after right-sided labyrinthectomy was performed. The animals were subjected to different periods of vibration exposure 2 days after surgery (5-, 10-, and 15-day periods). A comparison of the characteristics of the background impulse activity of neurons in both nuclei of intact rats revealed an initial asymmetry in the values of the mean impulse frequency and coefficient of variation of interimpulse intervals. After 5 days of vibration exposure, the values of the mean impulse frequency of neurons in both Deiters' nuclei were almost equal in labyrinthectomized rats. The mean impulse frequency of neurons on the uninjured side was higher than that on the injured side on the days following vibration exposure. The characteristics and functional significance of the findings are discussed.


Assuntos
Orelha Interna , Núcleos Vestibulares , Ratos , Animais , Núcleos Vestibulares/fisiologia , Vibração , Neurônios/fisiologia
16.
J Neurosci ; 43(6): 936-948, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36517242

RESUMO

Animals use information about gravity and other destabilizing forces to balance and navigate through their environment. Measuring how brains respond to these forces requires considerable technical knowledge and/or financial resources. We present a simple alternative-Tilt In Place Microscopy (TIPM), a low-cost and noninvasive way to measure neural activity following rapid changes in body orientation. Here, we used TIPM to study vestibulospinal neurons in larval zebrafish during and immediately after roll tilts. Vestibulospinal neurons responded with reliable increases in activity that varied as a function of ipsilateral tilt amplitude. TIPM differentiated tonic (i.e., sustained tilt) from phasic responses, revealing coarse topography of stimulus sensitivity in the lateral vestibular nucleus. Neuronal variability across repeated sessions was minor relative to trial-to-trial variability, allowing us to use TIPM for longitudinal studies of the same neurons across two developmental time points. There, we observed global increases in response strength and systematic changes in the neural representation of stimulus direction. Our data extend classical characterization of the body tilt representation by vestibulospinal neurons and establish the utility of TIPM to study the neural basis of balance, especially in developing animals.SIGNIFICANCE STATEMENT Vestibular sensation influences everything from navigation to interoception. Here, we detail a straightforward, validated, and nearly universal approach to image how the nervous system senses and responds to body tilts. We use our new method to replicate and expand on past findings of tilt sensing by a conserved population of spinal-projecting vestibular neurons. The simplicity and broad compatibility of our approach will democratize the study of the response of the brain to destabilization, particularly across development.


Assuntos
Microscopia , Medula Espinal , Animais , Medula Espinal/fisiologia , Peixe-Zebra , Postura/fisiologia , Neurônios/fisiologia , Núcleos Vestibulares/fisiologia
17.
Neural Plast ; 2022: 6463355, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36452876

RESUMO

Sound stimulation is generally used for tinnitus and hyperacusis treatment. Recent studies found that long-term noise exposure can change synaptic and firing properties in the central auditory system, which will be detected by the acoustic startle reflex. However, the perceptual consequences of long-term low-intensity sound exposure are indistinct. This study will detect the effects of moderate-level noise exposure (83 dB SPL) on auditory loudness, and temporal processing was evaluated using CBA/CaJ mice. C-Fos staining was used to detect neural activity changes in the central auditory pathway. With two weeks of 83 dB SPL noise exposure (8 hours per day), no persistent threshold shift of the auditory brainstem response (ABR) was identified. On the other hand, noise exposure enhanced the acoustic startle response (ASR) and gap-induced prepulse inhibition significantly (gap-PPI). Low-level noise exposure, according to the findings, can alter temporal acuity. Noise exposure increased the number of c-Fos labeled neurons in the dorsal cochlear nucleus (DCN) and caudal pontine reticular nucleus (PnC) but not at a higher level in the central auditory nuclei. Our results suggested that noise stimulation can change acoustical temporal processing presumably by increasing the excitability of auditory brainstem neurons.


Assuntos
Núcleo Coclear , Percepção do Tempo , Camundongos , Animais , Camundongos Endogâmicos CBA , Reflexo de Sobressalto , Núcleos Vestibulares , Proteínas Proto-Oncogênicas c-fos
18.
PLoS One ; 17(11): e0278205, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36441755

RESUMO

In studies of vestibulo-ocular reflex (VOR), the horizontal VOR circuit is much clearer than vertical-torsional VOR. The circuit and mechanism of gravity-related vertical-torsional VOR is probably weak. "Somatosensory vestibular interaction" is a known extra source to facilitate VOR, and cervico-ocular reflex is a representative for torsional VOR compensation. Whereas, how the cervical afferents finally reach the oculomotor system is less documented. Actually, when the head tilts, which generates cervico-ocular reflex, not only the neck muscle is activated, but also the jaw muscle is stretched by gravity dragged mandible and/or tissue-muscle connection between the mandible and clavicle. We have previously identified a projection from the jaw muscle afferent mesencephalic trigeminal nucleus (Vme) neurons to oculomotor nuclei (III/IV) and their premotor neurons in interstitial nucleus of Cajal (INC)-a well-known pre-oculomotor center manipulating vertical-torsional eye movements. We hypothesized that these projections may interact with vestibulo-ocular signals during vertical-torsional VOR, because effects of gravity on jaw muscles and bones has been reported. Thus, we injected different anterograde tracers into the Vme and medial vestibular nucleus (MVN)-the subnuclear area particularly harboring excitatory vestibulo-ocular neurons, and immunostained III/IV motoneurons. Retrograde tracer was injected into the III in the same animals after dual anterograde tracers' injections. Under confocal microscope, we observed the Vme and MVN neuronal endings simultaneously terminated onto the same III/IV motoneurons and the same INC pre-oculomotor neurons. We consider that jaw muscle proprioceptive Vme neurons projecting to the III/IV and INC would sense spindle activity if the jaw muscle is stretched by gravity dragged mandible or connection between mandible and clavicle during head rolling. Therefore, the convergent innervation of the Vme and MVN neurons onto the oculomotor and pre-oculomotor nuclei would be a neuroanatomic substrate for interaction of masticatory proprioception with the vestibulo-ocular signals upon the oculomotor system during vertical-torsional VOR.


Assuntos
Movimentos Oculares , Núcleos Vestibulares , Ratos , Animais , Mesencéfalo , Reflexo Vestíbulo-Ocular , Neurônios Motores
19.
Cells ; 11(22)2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36429025

RESUMO

We previously reported adult reactive neurogliogenesis in the deafferented vestibular nuclei following unilateral vestibular neurectomy (UVN) in the feline and the rodent model. Recently, we demonstrated that UVN induced a significant increase in a population of cells colocalizing the transcription factor sex determining region Y-box 2 (SOX2) and the glial fibrillary acidic protein (GFAP) three days after the lesion in the deafferented medial vestibular nucleus. These two markers expressed on the same cell population could indicate the presence of lesion-reactive multipotent neural stem cells in the vestibular nuclei. The aim of our study was to provide insight into the potential neurogenic niche status of the vestibular nuclei in physiological conditions by using specific markers of stem cells (Nestin, SOX2, GFAP), cell proliferation (BrdU) and neuronal differentiation (NeuN). The present study confirmed the presence of quiescent and activated adult neural stem cells generating some new neurons in the vestibular nuclei of control rats. These unique features provide evidence that the vestibular nuclei represent a novel NSC site for the generation of neurons and/or glia in the adult rodent under physiological conditions.


Assuntos
Células-Tronco Neurais , Núcleos Vestibulares , Gatos , Animais , Ratos , Núcleos Vestibulares/metabolismo , Neurogênese , Neurônios , Nicho de Células-Tronco
20.
Sci Rep ; 12(1): 18999, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36347898

RESUMO

Parkinsonian symptoms relief by electrical stimulation is constructed by modulating neural network activity, and Galvanic vestibular stimulation (GVS) is known to affect the neural activity for motor control by activating the vestibular afferents. However, its underlying mechanism is still elusive. Due to the tight link from the peripheral vestibular organ to vestibular nucleus (VN), the effect by GVS was investigated to understand the neural mechanism. Using Sprague Dawley (SD) rats, behavioral response, extracellular neural recording, and immunohistochemistry in VN were conducted before and after the construction of Parkinson's disease (PD) model. Animals' locomotion was tested using rota-rod, and single extracellular neuronal activity was recorded in VN. The immunohistochemistry detected AMPA and NMDA receptors in VN to assess the effects by different amounts of electrical charge (0.018, 0.09, and 0.18 coulombs) as well as normal and PD with no GVS. All PD models showed the motor impairment, and the loss of TH+ neurons in medial forebrain bundle (mfb) and striatum was observed. Sixty-five neuronal extracellular activities (32 canal & 33 otolith) were recorded, but no significant difference in the resting firing rates and the kinetic responding gain were found in the PD models. On the other hand, the numbers of AMPA and NMDA receptors increased after the construction of PD model, and the effect by GVS was significantly evident in the change of NMDA receptors (p < 0.018). In conclusion, the increased glutamate receptors in PD models were down-regulated by GVS, and the plastic modulation mainly occurred through NMDA receptor in VN.


Assuntos
Doença de Parkinson , Receptores de N-Metil-D-Aspartato , Ratos , Animais , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Ratos Sprague-Dawley , Núcleos Vestibulares , Estimulação Elétrica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...